Béda révisi "Akar kuadrat"

35 bita ditambahkeun ,  16 tahun yang lalu
taya kamandang éditan
Dina [[matematik]], '''akar kuadrat''' [[real number|wilangan riil]] [[non-negative|non-negatip]] ''x'' dilambangkeun ku <math>\sqrt x</math> sarta ngagambarkeun wilangan riil non-negatip nu ngarupakeun ''kuadrat'' (hasil kali tina wilangan eta sorangan) nyaeta ''x''.
 
For exampleContona, <math>\sqrt 9 = 3</math> sincesaprak <math>3^2 = 3 \times 3 = 9</math>.
 
ThisConto exampleieu suggestsnembongkeun howyen squareakar rootskuadrat canbisa arisedipake whenkeur solvingngarengsekeun [[quadratic equation|persamaan kuadrat]]s such assaperti <math>x^2=9</math> or,atawa moreleuwih generally,ilahar <math>ax^2+bx+c=0</math>.
 
ExtendingNgalegaan thetina squarekonsep rootakar conceptkuadrat tokeur negativewilangan realriil numbersnegatip givesnyaeta risedina towilangan [[imaginary number|imaginaryimajiner]] andjeung wilangan [[complex number|complexkompleks]] numbers.
 
Square roots are often ''[[irrational number]]s'', requiring an infinite, non-repeating series of digits in their [[decimal]] representation. For example, <math>\sqrt 2</math> cannot be written exactly in finite or repeating decimal form. Equivalently, it cannot be represented by a [[fraction]] whose numerator and denominator are [[integer]]s. Nonetheless, it is exactly the length of the [[diagonal]] of a [[square]] with side length 1. The discovery that <math>\sqrt 2</math> is irrational is attributed to the [[Pythagoreans]].
5.857

éditan