Béda révisi "Informasi Fisher"

I(\theta)=\frac{n}{\theta(1-\theta)}</math>
 
bisa katempo yen dumasar kana ekspektasi, saprak ngarupakeun varian bolak balik tian jumlah ''n'' Bernoulli variabel random.
may be seen to be in accord with what one would expect, since it is the reciprocal of the variance of the sum of the ''n'' Bernoulli random variables..
 
Dina kasus paramete &theta; ngarupakeun nilai vektor, informasi ngarupakeun harti-positip tina matriks, nu dihartikeun sameter dina parameter ruang; akibatna [[differential geometry]] dipake dina ieu topik. Tempo [[Fisher information metric]].
 
[[Category:Statistics]][[Category:Information theory]]
5.857

éditan