Béda révisi "Akar kuadrat"

68 bita dipupus ,  16 tahun yang lalu
taya kamandang éditan
Dina [[matematik]], '''akar kuadrat''' [[real number|wilangan riil]] [[non-negative|non-negatip]] ''x'' dilambangkeun ku <math>\sqrt x</math> sarta ngagambarkeun wilangan riil non-negatipnégatip nu ngarupakeun ''kuadrat'' (hasil kali tina wilangan etaéta sorangan) nyaetanyaéta ''x''.
 
Contona, <math>\sqrt 9 = 3</math> saprak <math>3^2 = 3 \times 3 = 9</math>.
 
Conto ieu nembongkeun yenyén akar kuadrat bisa dipakedipaké keur ngarengsekeunngaréngsékeun [[quadratic equation|persamaan kuadrat]] saperti <math>x^2=9</math> atawa leuwih ilahar <math>ax^2+bx+c=0</math>.
 
Ngalegaan tina konsep akar kuadrat keur wilangan riil negatipnégatip nyaetanyaéta dina wilangan [[imaginarywilangan number|imajinerimajinér]] jeung wilangan [[complexwilangan number|komplekskompléks]].
 
SquareAkar rootskuadrat aremindeng oftenmangrupa ''[[irrationalwilangan numberirasional]]s'', requiring an infinite, non-repeating series of digits in their [[decimal]] representation. For example, <math>\sqrt 2</math> cannot be written exactly in finite or repeating decimal form. Equivalently, it cannot be represented by a [[fraction]] whose numerator and denominator are [[integer]]s. Nonetheless, it is exactly the length of the [[diagonal]] of a [[square]] with side length 1. The discovery that <math>\sqrt 2</math> is irrational is attributed to the [[Pythagoreans]].
 
The square root [[Table ofTabel mathematicallambang symbolsmatematis|symbolLambang]] akar kuadrat (&radic;) wasmunggaran firstdipaké used during thedina [[16thabad centuryka-16]]. ItDiduga hasasalna beentina suggestedbentuk thatsingget it originated as an altered form of lowercasepikeun [[r]], representing thetina [[Basa Latin]] ''radix'' (meaninghartina "[[rootakar (mathematicsmatematik)|rootakar]]").
 
== Properties ==
11.771

éditan