Astronomi: Béda antarrépisi

Konten dihapus Konten ditambahkan
Shrikarsan (obrolan | kontribusi)
m Removing Link GA template as it is now available in wikidata
m Ngarapihkeun éjahan, replaced: teh → téh , oge → ogé (2), ngarupakeun → mangrupa (2), ea → éa (5), eo → éo (2), salasahiji → salah sahiji (2), kusabab → ku sabab using AWB
Baris ka-1:
{{tarjamahkeun|Inggris}}
'''Astronomi''', nu sacara [[étimologi]]s hartina "''[[hukum]] [[béntang]]''" (tina [[Basa Yunani]]: αστρονομία = άστρον + [[nomos|νόμος]]) ngarupakeunmangrupa [[élmu]] nu ngawengku [[panalungtikan]] jeung katerangan [[kajadian|kajadian-kajadian]] nu tumiba di luareun [[Marcapada]] jeung [[atmosfir marcapada|atmosfirna]]. Astronomi ngulik sasakala, évolusi, sipat-sipat kimia jeung fisika objék-objék nu bisa kapanggih di langit (luareun Bumi), sarta prosés-prosés nu patali.
[[Gambar:Moon Dedal crater.jpg|thumb|right|250px|Astronomi bulan: kawah nu badag nyéta [[Kawah Daedalus|Daedalus]], fotograf beunang awak [[Apollo 11]] nalika maranéhna ngurilingan [[Bulan]] taun 1969. Located near the center of the far side of Earth's Moon, its diameter is about 93 kilometers (58 miles).]]
Astronomi ngarupakeunmangrupa salasahijisalah sahiji ti saeutik élmu ti mana para [[astronomi amatir|amatir]] bisa boga peran nu aktif, utamana dina manggihan jeung ngawaskeun [[fénoména]] transién. Astronomi teu aya patalina jeung [[astrologi]], [[pseudoscience]] nu nyoba-nyoba ngaramalkeun takdir jalma ku jalan nyukcruk jalur objék astronomis. Sanajan dua widang éta babagi sumber nu méh sarua, ari sabenerna mah béda pisan; astronomer maké [[métode ilmiah]], sedengkeun astrologer mah henteu.
 
== Bagbagan astronomi ==
Dina mangsa munggaranana, balik deui ka jaman [[Yunani kuna]] jeung nu séjénna, astronomi utamana ngulik [[astrométri]], ngalelebah planét jeung bintang di langit. Kadieunakeun, pagawéan [[Johannes Kepler|Kepler]] jeung [[Isaac Newton|Newton]] geus naratas jalan pikeun [[celestial mechanics]], nu sacara matematis ngaramal ketak/pola interaksi ''celestial bodies'' nu kapangaruhan ku graviti, jeung objék-objék [[tatasurya]] umumna. Pagawéan-pagawéan nu dikeureuyeuh dina dua widang ieu, nu baheula lolobana dipigawé ku leungeun, ayeuna mah geus maké alat-alat otomatis, nepi ka geus dianggap lain disiplin mandiri deui. Gerakan jeung posisi objék geus gampang pisan ditéang, astronomi modern leuwih merhatikeun jeung ngusahakeun nengetan jeung neuleuman sipat fisik sabenerna objék-objék langit—what makes them "tick".
 
Ti mimiti abad ka-20 widang astronomi profésional beulah jadi ''[[observational astronomy]]'' jeung [[astrofisik tioritis]]. Najan ''astronomer'' lolobana ngagabungkeun unsur-unsur ti éta dua widang dina panalungtikanana, kusababku sabab bédana kaahlian nu dipaké, kalolobaan astronomer profésional leuwih condong ka salasahijinasalah sahijina. ''Observational astronomy'' leuwih condong utamana ka ngumpulkeun data, kaasup ngawangun jeung ngaropéa instrumén sarta ngolah data nu kakumpulkeun; cabang ieu ayeuna disebut salaku "astrométri" atawa "astronomy". TheoreticalThéoretical astrophysics is concerned mainly with figuring out the observational implications of different models, and involves working with computer or analytic models.
 
Widang ulikan astronomi ogé digolongkeun dumasar dua jalan nu béda: dumasar "subjék", biasana nurutkeun wewengkon langit (misalna ''Galactic astronomy'') atawa "masalah nu ditujul" (saperti dibentukna béntang atawa kosmologi); atawa dumasar cara nu dipaké pikeun meunangkeun data.
Baris ka-41:
 
* [[Astronomi Optik]] ngagambarkeun téhnik anu dianggo ngadétéksi jeung nganalisa [[cahaya]] dina atawa sakitar [[panjang gelombang]] nu bisa kadétéksi ku [[panon]] (kira-kira 400 - 800 nm). Alat anu paling sering dianggo nyaéta [[téléskop]], nu sok dilengkepan ku [[electronic imager]] jeung [[spectrograph]].
* [[Astronomi Infrared]] nguruskeun détéksi radiasi infrared (panjang gelombang anu leuwih panjang batan cahaya beureum). Alat utama anu paling sering dianggo nyaéta [[téléskop]] namung dilengkepan ku instrumen khusus kanggo infrared. [[Space telescope]] ogeogé dianggo kanggo ngaleungitkeun gangguan éléktromagnétik (''electromagnetic interference'') anu datang ti atmosfér.
* [[Astronomi Radio]] nganggo instrumen anu sama sakali béda kanggo ngadétéksi [[radiasi]] panjang gelombang antawis mm dugi ka cm. Alat panampina sami sareng nu dianggo dina nampi transmisi siaran [[radio]]. Tingal ogeogé [[Teleskop Radio]].
* [[High-energy astronomy]]
 
Baris ka-50:
[[uap cai]], kumargi kitu obsérvatorium infrared biasanya ditempatkeun di lokasi anu luhur, garing,atanapi di luar angkasa.
 
Atmosfer tehtéh opaque (teu bisa ditembus) kanggo panjang gelombang nu dianggo dina [[astronomi X-ray]], [[astronomi gamma-ray]], [[astronomi UV]] jeung, kacuali kanggo "jandéla" sakedik panjang gelombang, [[astronomi Far infrared]] , janten pangamatan mung tiasa dilaksanakeun ngagunakeun [[balon udara]] atawa [[observatorium ruang angkasa]].
 
== Sajarah ringkes ==
{{utama|Sajarah astronomi}}
Dina bagian awal sajarahna, astronomi ngan wungkul ngawengku observasi jeung prédiksi ketak/gerak objék-objék langit nu bisa ditempo langsung ku panon.[[Rigveda]] didumasarkeun kana 27 [[konstélasi]] nu aya patalina jeung gerakan panonpoé jeung 12 babagian [[zodiak]] langit. [[Peradaban Hellenik|Yunani Kuna]] méré sumbangan nu kalintang lobana pikeun astronomi, di antarana definisi sistim [[apparent magnitude|magnitude]]. The [[Bible]] contains a number of statements on the position of the earthéarth in the universe and the nature of the stars and planets, most of which are poetic rather than literal; see [[Biblical cosmology]]. In [[500|500 AD]], [[Aryabhata]] presented a mathematical system that took the earthéarth to spin on its axis and considered the motions of the planets with respect to the sun.
 
Astronomy was mostly stagnant in [[Middle Ages|medieval]] [[Europe]], but flourished meanwhileméanwhile in the [[Arab]] world. The late [[9th century]] Islamic astronomer [[al-Farghani]] (Abu'l-Abbas Ahmad ibn Muhammad ibn Kathir al-Farghani) wrote extensively on the motion of celestial bodies. His work was translated into Latin in the [[12th century]]. In the late [[10th century]], a huge [[observatory]] was built nearnéar [[Tehran]], [[Iran]], by the astronomer al-Khujandi who observed a series of meridian transits of the Sun, which allowed him to calculate the obliquity of the ecliptic. In Persia, [[Omar Khayyam]] (Ghiyath al-Din Abu'l-Fath Umar ibn Ibrahim al-Nisaburi al-Khayyami) compiled many tables and performed a reformation of the [[calendar]] that was more accurate than the [[Julian Calendar|Julian]] and came close to the [[Gregorian calendar|Gregorian]].
 
During the [[Renaissance]] [[Copernicus]] proposed a [[heliocentric model]] of the [[Solar System]]. His work was defended, expanded upon, and corrected by [[Galileo Galilei]] and [[Johannes Kepler]]. Kepler was the first to devise a system that described correctly the details of the motion of the planets with the Sun at the center. However, Kepler did not succeed in formulating a theorythéory behind the laws he wrote down. It was left to [[Sir Isaac Newton|Newton's]] invention of [[celestial dynamics]] and his [[law of gravitation]] to finally explain the motions of the [[planet]]s.
 
Stars were found to be faraway objects. With the advent of [[spectroscopy]] it was proved that they were similar to our own sun, but with a wide range of [[temperature]]s, [[mass]]es and sizes. The existence of our [[galaxy]], the [[Milky Way]], as a separate group of stars was only proven in the 20th century, along with the existence of "external" galaxies, and soon after, the expansion of the [[universe]] seen in the recession of most galaxies from us. [[Cosmology]] made huge advances during the 20th century, with the model of the [[big bang]] heavilyhéavily supported by the evidence provided by astronomy and physics, such as the [[cosmic microwave background radiation]], [[Hubble's Law]] and [[big bang nucleosynthesis|cosmological abundances of elements]].
<!--
[[image:ant.nebula.arp.600pix.jpg|thumb|right|250px|Stellar astronomy, Stellar Evolution: The [[Mz3|Ant planetary nebula]]. The ejection of gas, from the dying star at the center, has symmetrical patterns unlike the chaotic patterns expected from an ordinary explosion.]]-->
Baris ka-79:
* [[Timeline of solar astronomy]]
* [[Timeline of solar system astronomy]]
 
* [[Timeline of astronomical maps, catalogs, and surveys]]
* [[Timeline of telescopes, observatories, and observing technology]]