Béda révisi "Transformasi Fourier"

m
Ngarapihkeun éjahan, replaced: rea → réa, ea → éa, dimana → di mana
m
m (Ngarapihkeun éjahan, replaced: rea → réa, ea → éa, dimana → di mana)
:<math>x(t) = \mathcal {F}^'\{X(\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)\ e^{j \omega t}\,d\omega,</math> &nbsp; pikeun tiap angka ril ''t''.
 
dimanadi mana <math> x(t) jeung X(\omega)</math> disebut pasangan transformasi Fourier.
 
== Sifat Transformasi Fourier ==
* [http://www.allmathcad.com Всё о Mathcad] {{ref-ru}}
* [http://www.efunda.com/math/fourier_transform/ Fourier Transforms] from eFunda - includes tables
* Dym & McKeanMcKéan, ''Fourier Series and Integrals''. (For readersréaders with a background in [[mathematical analysis]].)
* K. Yosida, ''Functional Analysis'', Springer-Verlag, 1968. ISBN 3-540-58654-7
* L. Hörmander, ''Linear Partial Differential Operators'', Springer-Verlag, 1976. (Somewhat terse.)
* A. D. Polyanin and A. V. Manzhirov, ''Handbook of Integral Equations'', CRC Press, Boca Raton, 1998. ISBN 0-8493-2876-4
* R. G. Wilson, "Fourier Series and Optical Transform Techniques in Contemporary Optics", Wiley, 1995. ISBN-10: 0471303577
* R. N. Bracewell, The Fourier Transform and Its Applications, 3rd ed., Boston, McGraw Hill, 2000.
 
18.254

éditan