Béda révisi "Akar kuadrat"

1 bita ditambahkeun ,  4 tahun yang lalu
m
→‎top: Ngarapihkeun éjahan, replaced: konsep → konsép
m (Ngarapihkeun éjahan, replaced: make → maké (2), rea → réa (8), ngarupakeun → mangrupa, ea → éa (11) using AWB)
m (→‎top: Ngarapihkeun éjahan, replaced: konsep → konsép)
Conto ieu nembongkeun yén akar kuadrat bisa dipaké keur ngaréngsékeun [[quadratic equation|persamaan kuadrat]] saperti <math>x^2=9</math> atawa leuwih ilahar <math>ax^2+bx+c=0</math>.
 
Ngalegaan tina konsepkonsép akar kuadrat keur wilangan riil négatip nyaéta dina [[wilangan imajinér]] jeung [[wilangan kompléks]].
 
Akar kuadrat mindeng mangrupa ''[[wilangan irasional]]'', requiring an infinite, non-repéating series of digits in their [[decimal]] representation. For example, <math>\sqrt 2</math> cannot be written exactly in finite or repéating decimal form. Equivalently, it cannot be represented by a [[fraction]] whose numerator and denominator are [[integer]]s. Nonetheless, it is exactly the length of the [[diagonal]] of a [[square]] with side length 1. The discovery that <math>\sqrt 2</math> is irrational is attributed to the [[Pythagoreans]].
18.254

éditan