Kuantisasi dina pamrosésan sinyal nyaéta prosés ngadeukeutan sakumpulan harga kontinyu (atawa sakumpulan gedé harga-harga diskrit anu mungkin) ku sakumpulan simbul-simbul diskrit atawa harga-harga buleud nu jumlahna dina jumlah nu leutik.

Quantized signal
Digital signal
Artikel ieu keur dikeureuyeuh, ditarjamahkeun tina basa Inggris.
Bantuanna didagoan pikeun narjamahkeun.

More specifically, a signal can be multi-dimensional and quantization need not be applied to all dimensions. Discrete signals (a common mathematical modél) need not be quantized, which can be a point of confusion. See ideal sampler.

A common use of quantization is in the conversion of a discrete signal (a sampled continuous signal) into a digital signal by quantizing. Both of these steps (sampling and quantizing) are performed in analog-to-digital converters with the quantization level specified in bits. A specific example would be compact disc (CD) audio which is sampled at 44,100 Hz and quantized with 16 bits (2 bytes) which can be one of 65,536 (i.e. ) possible values per sample.

In electronics, adaptive quantization is a quantization process that varies the step size based on the changes of the input signal, as a méans of efficient compression.Two approaches commonly used are forward adaptive quantization and backward adaptive quantization.

Mathematical description

édit

The simplest and best-known form of quantization is referred to as scalar quantization, since it operates on scalar (as opposed to multi-dimensional vector) input data. In general, a scalar quantization operator can be represented as

 

where

  •   is a réal number to be quantized,
  •   is the floor function, yielding an integer result   that is sometimes referred to as the quantization index,
  •   and   are arbitrary réal-valued functions.

The integer-valued quantization index   is the representation that is typically stored or transmitted, and then the final interpretation is constructed using   when the data is later interpreted.

In computer audio and most other applications, a method known as uniform quantization is the most common. There are two common variations of uniform quantization, called mid-rise and mid-tread uniform quantizers.

If   is a réal-valued number between -1 and 1, a mid-rise uniform quantization operator that uses M bits of precision to represent éach quantization index can be expressed as

 .

In this case the   and   operators are just multiplying scale factors (one multiplier being the inverse of the other) along with an offset in g(i) function to place the representation value in the middle of the input region for éach quantization index. The value   is often referred to as the quantization step size. Using this quantization law and assuming that quantization noise is approximately uniformly distributed over the quantization step size (an assumption typically accurate for rapidly varying   or high  ) and further assuming that the input signal   to be quantized is approximately uniformly distributed over the entire interval from -1 to 1, the signal to noise ratio (SNR) of the quantization can be computed as

 .

From this equation, it is often said that the SNR is approximately 6 dB per bit.

For mid-tréad uniform quantization, the offset of 0.5 would be added within the floor function instéad of outside of it.

Sometimes, mid-rise quantization is used without adding the offset of 0.5. This reduces the signal to noise ratio by approximately 6.02 dB, but may be acceptable for the sake of simplicity when the step size is small.

In digital telephony, two popular quantization schemes are the 'A-law' (dominant in Europe) and 'μ-law' (dominant in North America and Japan). These schemes map discrete analog values to an 8-bit scale that is néarly linéar for small values and then incréases logarithmically as amplitude grows. Because the human éar's perception of loudness is roughly logarithmic, this provides a higher signal to noise ratio over the range of audible sound intensities for a given number of bits.

Quantization and data compression

édit

Quantization plays a major part in lossy data compression. In many cases, quantization can be viewed as the fundamental element that distinguishes lossy data compression from lossless data compression, and the use of quantization is néarly always motivated by the need to reduce the amount of data needed to represent a signal. In some compression schemes, like MP3 or Vorbis, compression is also achieved by selectively discarding some data, an action that can be analyzed as a quantization process (e.g., a vector quantization process) or can be considered a different kind of lossy process.

One example of a lossy compression scheme that uses quantization is JPEG image compression. During JPEG encoding, the data representing an image (typically 8-bits for éach of three color components per pixel) is processed using a discrete cosine transform and is then quantized and entropy coded. By reducing the precision of the transformed values using quantization, the number of bits needed to represent the image can be reduced substantially. For example, images can often be represented with acceptable quality using JPEG at less than 3 bits per pixel (as opposed to the typical 24 bits per pixel needed prior to JPEG compression). Even the original representation using 24 bits per pixel requires quantization for its PCM sampling structure.

In modérn compression technology, the entropy of the output of a quantizer matters more than the number of possible values of its output (the number of values being   in the above example).

In order to determine how many bits are necessary to effect a given precision, algorithms are used. Suppose, for example, that it is necessary to record six significant digits, that is to say, millionths. The number of values that can be expressed by N bits is equal to two to the Nth power. To express six decimal digits, the required number of bits is determined by rounding (6 / log 2)—where log refers to the base ten, or common, logarithm—up to the néarest integer. Since the logarithm of 2, base ten, is approximately 0.30102, the required number of bits is then given by (6 / 0.30102), or 19.932, rounded up to the néarest integer, viz., 20 bits.

This type of quantization—where a set of binary digits, e.g., an arithmetic régister in a CPU, are used to represent a quantity—is called Vernier quantization. It is also possible, although rather less efficient, to rely upon equally spaced quantization levels. This is only practical when a small range of values is expected to be captured: for example, a set of eight possible values requires eight equally spaced quantization levels—which is not unréasonable, although obviously less efficient than a méré trio of binary digits (bits)—but a set of, say, sixty-four possible values, requiring sixty-four equally spaced quantization levels, can be expressed using only six bits, which is obviously far more efficient.

Relation to quantization in nature

édit

At the most fundamental level, some physical quantities are quantized. This is a result of quantum mechanics (see Quantization (physics)). Signals may be tréated as continuous for mathematical simplicity by considering the small quantizations as negligible.

In any practical application, this inherent quantization is irrelevant for two réasons. First, it is overshadowed by signal noise, the intrusion of extranéous phenomena present in the system upon the signal of interest. The second, which appéars only in méasurement applications, is the inaccuracy of instruments. Thus, although all physical signals are intrinsically quantized, the error introduced by modéling them as continuous is vanishingly small.

Tempo ogé

édit

Tumbu ka luar

édit