Béda révisi "Transformasi Fourier"

2.972 bita ditambahkeun ,  12 tahun yang lalu
nuluykeun hanca
(nuluykeun hanca)
'''Transformasi Fourier''' nyéta hiji alat matematis anu ngawincik [[fungsi]] non-périodik kana fungsi-fungsi [[sinusoida]] anu nyusunna. Tranformasi Fourier ogé mangrupakeun alat pikeun ngarobah fungsi waktu kana wujud fungsi frékuénsi.
:''Artikel ieu sacara husus medar transformasi Fourier anu ngarobah fungsi dina doméin waktu ka doméin frékuénsi; pikeun jinis transformasi Fourier séjénna, tempo [[analisis Fourier]] sarta [[daftar transformasi anu patali jeung Fourier]]. Pikeun jéneralisasi, tempo [[transformasi Fourier fraksional]] sarta [[transformasi koninikal linier]]''
{{Transformasi Fourier}}
 
Dina [[matématika]], pikeunlamun ngagéneralisasifungsi réprésentasipériodik [[Dérétbisa diwincik kana sajumlah Fourier|dérét fungsi anu disebut deret Fourier]] ku rumus <math>x(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_o t}.</math> sahinggamangka bisa lumaku ogégéneralisasi pikeun sinyalfungsi non-périodik, makabisa digunakeundilakukeun '''Transformasimaké rumus nu disebut transformasi Fourier'''. Jadi transformasi Fourier mangrupakeun generalisasi tina [[Dérét Fourierdérét Fourier]]
 
==DefinisiDéfinisi==
Lamun x(t) mangrupakeun hiji sinyal non-periodikpériodik. Mangka transformasi Fourier x(t), anu dilambangkeun ku <math>\mathcal{F}</math>, didefinisikeundidéfinisikeun ku
 
:<math>X(\omega) = \mathcal {F}\{x(t)\} = \int \limits _{-\infty}^{\infty} x(t)\ e^{-j \omega t}\,dt </math>
 
Kabalikan transformasi Fourier <math> X(\omega)</math> dilambangkeun ku <math> \mathcal {F^’}\{} </math> sarta didéfiniskieun kieu:
 
<math> x(t) = \mathcal {F^’}\{X(\omega)\} = \frac{1}{2\pi} \int _{-\infty}^{\infty} X(\omega)\ e^{ j\omega t}\,d\omega </math>
 
<math> x(t) jeung X(\omega)</math> disebut pasangan transformasi Fourier.
 
{{==Sifat Transformasi Fourier}}==
Urang ngagunakeun perlambang <math>x(t) \quad \stackrel{\mathcal{F}}{\Longleftrightarrow}\quad X(\omega)</math> pikeun ngalambangkeun yén ''x''(''t'') jeung ''X''(ω) mangrupakeun pasangan transformasi Fourier.
 
1. Liniéritas (superposisi):
 
::::<math>a\cdot x_1 (t) + b\cdot x_2 (t) \quad \stackrel{\mathcal{F}}{\Longleftrightarrow}\quad a\cdot X_1 (\omega) + b\cdot X_2 (\omega) </math>
 
2. Kakalian
 
::::{|
|<math>x_1 (t)\cdot x_2 (t) \,</math>
|&nbsp; &nbsp; <math>\stackrel{\mathcal{F}}{\Longleftrightarrow}\quad
\frac{1}{\sqrt{2\pi}}\cdot (X_1 * X_2)(\omega) \,</math>
| &nbsp; &nbsp; (konvensasi normalisasi uniter)
|-
|
|&nbsp; &nbsp; <math>\stackrel{\mathcal{F}}{\Longleftrightarrow}\quad
\frac{1}{2\pi}\cdot (X_1 * X_2 )(\omega) \,</math>
| &nbsp; &nbsp; (konvensi non-uniter)
|-
|
|&nbsp; &nbsp; <math>\stackrel{\mathcal{F}}{\Longleftrightarrow}\quad
(F*G)(\f) \,</math>
| &nbsp; &nbsp; (frekuensi biasa)
|}
 
3. Modulasi:
 
::::: <math>
\begin{align}
x(t)\cdot \cos \omega_{0}t
&\quad \stackrel{\mathcal{F}}{\Longleftrightarrow}\quad \frac{1}{2}[X(\omega+\omega_{0})+X(\omega-\omega_{0})],\qquad \omega_{0} \in \mathbb{R} \\
f(t)\cdot \sin \omega_{0}t
&\quad \stackrel{\mathcal{F}}{\Longleftrightarrow}\quad \frac{j}{2}[X(\omega+\omega_{0})-X(\omega-\omega_{0})] \\
x(t)\cdot e^{j\omega_{0}t}
&\quad \stackrel{\mathcal{F}}{\Longleftrightarrow}\quad X(\omega-\omega_{0})
\end{align}
\,</math>
 
4. Géséran waktu
 
:<math>x(t – t_o) \quad \stackrel{\mathcal{F}}{\Longleftrightarrow}\quad X(\omega)\ e^{-j \omega t_o} </math>
 
5. Géséran frékuénsi:
 
:<math>x(t) \ e^{j \omega_o t} \quad \stackrel{\mathcal{F}}{\Longleftrightarrow}\quad X(\omega – \omega_o) </math>
 
6. Skala:
 
::::<math> x(at) \quad \stackrel{\mathcal{F}}{\Longleftrightarrow}\quad \frac{1}{|a|}X\biggl(\frac{\omega}{a}\biggr), \qquad a \in \mathbb{R}, a \ne 0</math>
 
7. Lawan / kabalikan waktu:
 
::::<math>x(-t) \quad \stackrel{\mathcal{F}}{\Longleftrightarrow}\quad X(-\omega)</math>
 
8. Dualitas:
 
::::<math>X(t) \quad \stackrel{\mathcal{F}}{\Longleftrightarrow}\quad 2\pi x (-\omega)</math>
 
9. Diferensiasi waktu:
 
<math> x^’ (t) = \frac{d x(t)}{dt}\ x(t) \quad \stackrel{\mathcal{F}}{\Longleftrightarrow}\quad j\omega X(\omega) </math>
 
10. Diferensiasi frékuénsi:
 
<math> (-jt) x(t) \quad \stackrel{\mathcal{F}}{\Longleftrightarrow}\quad X^’ (\omega) = \frac{d X(\omega)}{dw} </math>
 
11. Integrasi:
 
::::<math>
\int_{-\infty}^{t} x(\tau)\, d\tau
\quad \stackrel{\mathcal{F}}{\Longleftrightarrow}\quad
\frac{1}{j\omega}X(\omega)+\pi X(0)\cdot \delta(\omega),
\,</math>
 
==Transformasi Fourier tina sawatara sinyal nu mangfaat==
 
 
==Catetan==
{{reflist}}
 
==Tempo ogeogé==
*[[Dérét Fourier]]
*[[Transformasi Fourier gancang]] ''(Fast Fourier transform, FFT)''
 
==Rujukan==
{{nofootnotes}}
*[http://www.efunda.com/math/fourier_transform/ Fourier Transforms] from eFunda - includes tables
* Dym & McKean, ''Fourier Series and Integrals''. (For readers with a background in [[mathematical analysis]].)
* R. N. Bracewell, The Fourier Transform and Its Applications, 3rd ed., Boston, McGraw Hill, 2000.
 
== Tumbu luarkaluar ==
* [http://eqworld.ipmnet.ru/en/auxiliary/aux-inttrans.htm Tables of Integral Transforms] at EqWorld: The World of Mathematical Equations.
* {{MathWorld | urlname= FourierTransform | title= Fourier Transform}}
* [http://www.ieee.li/pdf/viewgraphs_laplace.pdf Extending Laplace & Fourier Transforms by Dr. Shervin Erfani]
 
[[CategoryKategori:Konsép fisika dasar]]
[[Kategori: Telekomunikasi]]
[[CategoryKategori:Analisis Fourier]]
[[Category:Transformasi integral]]
[[Category:Operator unitér]]
 
[[ar:تحويل فوريي]]
[[tr:Fourier dönüşümü]]
[[zh:傅里叶变换]]
 
{{stub}}
3.120

éditan