Kuantisasi: Béda antarrépisi

Konten dihapus Konten ditambahkan
Ilhambot (obrolan | kontribusi)
m Ngarapihkeun éjahan, replaced: modern → modérn, model → modél (2)
Ilhambot (obrolan | kontribusi)
m Ngarapihkeun éjahan, replaced: register → régister
Baris ka-59:
In order to determine how many bits are necessary to effect a given precision, algorithms are used. Suppose, for example, that it is necessary to record six significant digits, that is to say, millionths. The number of values that can be expressed by N bits is equal to two to the Nth power. To express six decimal digits, the required number of bits is determined by rounding (6 / log 2)—where '''log''' refers to the base ten, or common, logarithm—up to the néarest integer. Since the logarithm of 2, base ten, is approximately 0.30102, the required number of bits is then given by (6 / 0.30102), or 19.932, rounded up to the néarest integer, ''viz.'', '''20''' bits.
 
This type of quantization—where a set of binary digits, ''e.g.'', an arithmetic registerrégister in a CPU, are used to represent a quantity—is called Vernier quantization. It is also possible, although rather less efficient, to rely upon equally spaced quantization levels. This is only practical when a small range of values is expected to be captured: for example, a set of eight possible values requires eight equally spaced quantization levels—which is not unréasonable, although obviously less efficient than a méré trio of binary digits (bits)—but a set of, say, sixty-four possible values, requiring sixty-four equally spaced quantization levels, can be expressed using only six bits, which is obviously far more efficient.
 
== Relation to quantization in nature ==
Baris ka-81:
{{unreferenced|date=August 2007}}
 
[[KategoriCategory:Pamrosésan sinyal]]