Matematika mindeng pisan ngagunakeunsakumpulan lambang pikeun éksprési matematisna. Pikeun nu icikibung dina widang matematik mah, moal kukumaha, tapi pikeun nu arang nempo, sigana kudu mindeng ngapalkeun. Di handap ieu dibéréndélkeun rupa-rupa lambang matematis katut ngarana, éjahanana, jeung saeutik dadaranana.

Catetan: Mun sababaraha lambang teu némbongan sakumaha mistina, panyaksrak anjeun can sagemblengna ngalarapkeun HTML 4 character entities, atawa anjeun kudu nginstal aksara tambahan. Anjeun bisa mariksa panyaksrak anjeun di dieu.

Lambang Ngaran Dibaca Kategori

+

tambah plus aritmétik
4 + 6 = 10 nu hartina mun opat ditambahkeun ka genep, jumlahna, atawa hasilna, nyéta 10.
43 + 65 = 108; 2 + 7 = 9

kurang minus aritmétik
9 − 4 = 5 nu hartina mun salapan dikurangan opat, hasilna bakal lima. Tanda minus ogé nandakeun yén hiji angka négatif. Pikeun conto, 5 + (−3) = 2 hartina mun lima ditambahkeun jeung négatif tilu, hasilna dua.
36 − 5 = 31


material implication implies; if .. then propositional logic
AB méans: if A is true then B is also true; if A is false then nothing is said about B.
→ may méan the same as ⇒, or it may have the méaning for functions mentioned further down
x = 2  ⇒  x2 = 4 is true, but x2 = 4   ⇒  x = 2 is in general false (since x could be −2)


material equivalence if and only if; iff propositional logic
A ⇔ B méans: A is true if B is true and A is false if B is false
x + 5 = y + 2  ⇔  x + 3 = y

logical conjunction or meet in a lattice and propositional logic, lattice theory
the statement AB is true if A and B are both true; else it is false
n < 4  ∧  n > 2  ⇔  n = 3 when n is a natural number

logical disjunction or join in a lattice or propositional logic, lattice theory
the statement AB is true if A or B (or both) are true; if both are false, the statement is false
n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 when n is a natural number

¬
/

logical negation not propositional logic
the statement ¬A is true if and only if A is false
a slash placed through another operator is the same as "¬" placed in front
¬(A ∧ B) ⇔ (¬A) ∨ (¬B); x ∉ S  ⇔  ¬(x ∈ S)

universal quantification for all; for any; for éach predicate logic
∀ x: P(x) méans: P(x) is true for all x
∀ n ∈ N: n2 ≥ n

existential quantification there exists predicate logic
∃ x: P(x) méans: there is at léast one x such that P(x) is true
∃ n ∈ N: n + 5 = 2n

=

equality equals everywhere
x = y méans: x and y are different names for precisely the same thing
1 + 2 = 6 − 3

:=

:⇔

definition is defined as everywhere
x := y or x ≡ y méans: x is defined to be another name for y (but note that ≡ can also méan other things, such as congruence)
P :⇔ Q méans: P is defined to be logically equivalent to Q
cosh x := (1/2)(exp x + exp (−x)); A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B)

{ , }

set brackets the set of ... set theory
{a,b,c} méans: the set consisting of a, b, and c
N = {0,1,2,...}

{ : }
{ | }

set builder notation the set of ... such that ... set theory
{x : P(x)} méans: the set of all x for which P(x) is true. {x | P(x)} is the same as {x : P(x)}.
{n ∈ N : n2 < 20} = {0,1,2,3,4}


{}

empty set empty set set theory
{} méans: the set with no elements; ∅ is the same thing
{n ∈ N : 1 < n2 < 4} = {}


set membership in; is in; is an element of; is a member of; belongs to set theory
a ∈ S méans: a is an element of the set S; a ∉ S méans: a is not an element of S
(1/2)−1 ∈ N; 2−1 ∉ N


subset is a subset of set theory
A ⊆ B méans: every element of A is also element of B
A ⊂ B méans: A ⊆ B but A ≠ B
A ∩ BA; Q ⊂ R

set theoretic union the union of ... and ...; union set theory
A ∪ B méans: the set that contains all the elements from A and also all those from B, but no others
A ⊆ B  ⇔  A ∪ B = B

set theoretic intersection intersected with; intersect set theory
A ∩ B méans: the set that contains all those elements that A and B have in common
{x ∈ R : x2 = 1} ∩ N = {1}

\

set theoretic complement minus; without set theory
A \ B méans: the set that contains all those elements of A that are not in B
{1,2,3,4} \ {3,4,5,6} = {1,2}

( )
[ ]
{ }

function application; grouping of set theory
for function application: f(x) méans: the value of the function f at the element x
for grouping: perform the operations inside the parentheses first
If f(x) := x2, then f(3) = 32 = 9; (8/4)/2 = 2/2 = 1, but 8/(4/2) = 8/2 = 4

f:XY

function arrow from ... to functions
fX → Y méans: the function f maps the set X into the set Y
Consider the function fZ → N defined by f(x) = x2

N

natural numbers N numbers
N méans {0,1,2,3,...}, but see the article on natural numbers for a different convention.
{|a| : a ∈ Z} = N

Z

integers Z numbers
Z méans: {...,−3,−2,−1,0,1,2,3,...}
{a : |a| ∈ N} = Z

Q

rational numbers Q numbers
Q méans: {p/q : p,q ∈ Z, q ≠ 0}
3.14 ∈ Q; π ∉ Q

R

real numbers R numbers
R méans: {limn→∞ an : ∀ n ∈ N: an ∈ Q, the limit exists}
π ∈ R; √(−1) ∉ R

C

complex numbers C numbers
C méans: {a + bi : a,b ∈ R}
i = √(−1) ∈ C

<
>

comparison is less than, is gréater than partial orders
x < y méans: x is less than y; x > y méans: x is gréater than y
x < y  ⇔  y > x


comparison is less than or equal to, is gréater than or equal to partial orders
x ≤ y méans: x is less than or equal to y; x ≥ y méans: x is gréater than or equal to y
x ≥ 1  ⇒  x2 ≥ x

square root the principal square root of; square root real numbers
x méans: the positive number whose square is x
√(x2) = |x|

infinity infinity numbers
∞ is an element of the extended number line that is gréater than all réal numbers; it often occurs in limits
limx→0 1/|x| = ∞

π

pi pi Euclidean geometry
π méans: the ratio of a circle's circumference to its diaméter
A = πr² is the aréa of a circle with radius r

!

factorial factorial combinatorics
n! is the product 1×2×...×n
4! = 24

| |

absolute value absolute value of numbers
|x| méans: the distance in the real line (or the complex plane) between x and zero
|a + bi| = √(a2 + b2)

|| ||

norm norm of; length of functional analysis
||x|| is the norm of the element x of a normed vector space
||x+y|| ≤ ||x|| + ||y||

summation sum over ... from ... to ... of arithmetic
k=1n ak méans: a1 + a2 + ... + an
k=14 k2 = 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30

product product over ... from ... to ... of arithmetic
k=1n ak méans: a1a2···an
k=14 (k + 2) = (1  + 2)(2 + 2)(3 + 2)(4 + 2) = 3 × 4 × 5 × 6 = 360

integration integral from ... to ... of ... with respect to calculus
ab f(x) dx méans: the signed area between the x-axis and the graph of the function f between x = a and x = b
0b x2 dx = b3/3; ∫x2 dx = x3/3

f '

derivative derivative of f; f prime calculus
f '(x) is the derivative of the function f at the point x, i.e., the slope of the tangent there
If f(x) = x2, then f '(x) = 2x and f ''(x) = 2

gradient del, nabla, gradient of calculus
f (x1, …, xn) is the vector of partial derivatives (df / dx1, …, df / dxn)
If f (x,y,z) = 3xy + z² then ∇f = (3y, 3x, 2z)

A transparent image for text is: Image:Del.svg ().

partial partial derivative of calculus
With f (x1, …, xn), ∂f/∂xi is the derivative of f with respect to xi, with all other variables kept constant.
If f(x,y) = x2y, then ∂f/∂x = 2xy

perpendicular is perpendicular to orthogonality
xy méans: x is perpendicular to y; or more generally x is orthogonal to y.

bottom element the bottom element lattice theory
x = ⊥ méans: x is the smallest element.
insert more (suggestions are the inequality symbols); some symbols are used in examples before they are defined

Mun sababaraha lambang ieu dipaké dina artikel Wikipédia, aya hadéna méré saeutik dadaran ngeunaan lambang éta.

Artikel Wikipédia:Cara ngédit kaca ngandung émbaran ngeunaan cara ngetikkeun lambangg-lambang matematis ieu na artikel Wikipédia.

Tumbu kaluar

édit